7 research outputs found

    Input-driven unsupervised learning in recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is an attractor neural network with Hebbian learning (e.g. the Hopfield model). The model simplicity and the locality of the synaptic update rules come at the cost of a limited storage capacity, compared with the capacity achieved with supervised learning algorithms, whose biological plausibility is questionable. Here, we present an on-line learning rule for a recurrent neural network that achieves near-optimal performance without an explicit supervisory error signal and using only locally accessible information, and which is therefore biologically plausible. The fully connected network consists of excitatory units with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the patterns to be memorized are presented on-line as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs ('local fields'). Synapses corresponding to active inputs are modified as a function of the position of the local field with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. An additional parameter of the model allows to trade storage capacity for robustness, i.e. increased size of the basins of attraction. We simulated a network of 1001 excitatory neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction: our results show that, for any given basin size, our network more than doubles the storage capacity, compared with a standard Hopfield network. Our learning rule is consistent with available experimental data documenting how plasticity depends on firing rate. It predicts that at high enough firing rates, no potentiation should occu

    Multifeatural shape processing in rats engaged in invariant visual object recognition

    Get PDF
    The ability to recognize objects despite substantial variation in their appearance (e.g., because of position or size changes) represents such a formidable computational feat that it is widely assumed to be unique to primates. Such an assumption has restricted the investigation of its neuronal underpinnings to primate studies, which allow only a limited range of experimental approaches. In recent years, the increasingly powerful array of optical and molecular tools that has become available in rodents has spurred a renewed interest for rodent models of visual functions. However, evidence of primate-like visual object processing in rodents is still very limited and controversial. Here we show that rats are capable of an advanced recognition strategy, which relies on extracting the most informative object features across the variety of viewing conditions the animals may face. Rat visual strategy was uncovered by applying an image masking method that revealed the features used by the animals to discriminate two objects across a range of sizes, positions, in-depth, and in-plane rotations. Noticeably, rat recognition relied on a combination of multiple features that were mostly preserved across the transformations the objects underwent, and largely overlapped with the features that a simulated ideal observer deemed optimal to accomplish the discrimination task. These results indicate that rats are able to process and efficiently use shape information, in a way that is largely tolerant to variation in object appearance. This suggests that their visual system may serve as a powerful model to study the neuronal substrates of object recognition

    Input-driven unsupervised learning in recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is an attractor neural network with Hebbian learning (e.g. the Hopfield model). The model simplicity and the locality of the synaptic update rules come at the cost of a limited storage capacity, compared with the capacity achieved with supervised learning algorithms, whose biological plausibility is questionable. Here, we present an on-line learning rule for a recurrent neural network that achieves near-optimal performance without an explicit supervisory error signal and using only locally accessible information, and which is therefore biologically plausible. The fully connected network consists of excitatory units with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the patterns to be memorized are presented on-line as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs (’local fields’). Synapses corresponding to active inputs are modified as a function of the position of the local field with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. An additional parameter of the model allows to trade storage capacity for robustness, i.e. increased size of the basins of attraction. We simulated a network of 1001 excitatory neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction: our results show that, for any given basin size, our network more than doubles the storage capacity, compared with a standard Hopfield network. Our learning rule is consistent with available experimental data documenting how plasticity depends on firing rate. It predicts that at high enough firing rates, no potentiation should occur

    Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons

    Get PDF
    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex
    corecore